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Why worry about energy of software? 

•  Energy is consumed by hardware 
•  Hardware is getting more and more 

energy-efficient 

•  So why worry about energy-efficiency 
at the software level? 
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Reason 1 

• We take the application 
programmer’s viewpoint 
– programmers don’t know much 

about hardware 
– high-level languages hide the 

platform from the programmer 
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Reason 1 - continued 

 
 
 
 
•  Something like driving an energy-

efficient car badly 
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Energy-efficient hardware 

Energy-inefficient software 



Reason 2 

•  Energy efficiency as a design goal 
from the start 

•  Get an energy profile for a program as 
early as possible 
 Analyse the code to find out how 
much energy a program will use 
 Deliver software with energy 
guarantees 
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Reason 2 - continued 

  Don’t wait to test energy efficiency on 
hardware, after the software is 
developed  

 
 
 
   It might be too late to fix “energy bugs” 
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Development 
machine 

Deployment 
platform 



Reason 3 

•  You can save more energy at the 
software level than the hardware level 

 There are more energy optimisation 
opportunities higher up the system 
stack. 
 Most energy is wasted by application 
software 

/74 9 



Energy transparency 

•  Our aim is to let the programmer 
“see” the energy usage of the code 

–  without executing it 
–  so that the programmer can see 

where the program wastes energy 

•  In a similar spirit as UPPAAL formal models, 
directly on program code. 
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Example 

/74 11 

biquadCascade(BANKS) 
=  
157 * BANKS + 51.7 
nJoules 

This is an estimate of 
the energy used by the 
function. 
 
It is a linear function of 
the value of BANKS 



Example 
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Energy a design goal for programmers 
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Verification of energy specifications 
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Summary of goals 

•  We want tools for the programmer 

–  that give information about the energy 
usage of programs without running them 
(energy transparency) 

–  that allow energy assertions to be 
checked (energy design goals) 
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Analysis of programs 

•  A program is a physical object 

– some symbols on paper 
– a pattern of bits in memory 

•  But what is the meaning of a program? 
•  This is program semantics. 
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Program semantics 
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n = 4; 

z = 1;

while (n > 0) {

      z = z*n; 

      n = n-1;

} 

print(z);


To execute or analyse 
this program, 
we need to understand  
the meaning of “while”, 
“semicolon”, ”{”, “}”, etc. 
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Program syntax tree (parsing) 

n = 4
 z = 1


z = z*n
 n = n-1


print(z)
while 


n>0 


Statement List


Statement List
n = 4; 

z = 1;

while (n > 0) {

      z = z*n; 

      n = n-1;

} 

print(z);
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From syntax tree to flow graph 
Grammar Rules    Semantic Rules for flow of control 
If → if E then S1 else S2 
 
E.true := Sl



 
 
 
E.false := S2


 
 
 
S1.next := If.next


 
 
 
S2.next := If.next


While → while E S1 
 
E.true := S1


 
 
 
E.false := While.next


 
 
 
S1.next := While


StatementList → S1S2 .....    Sn 
Sj.next = Sj+1    (j = 1 to n-1) 
 


 
 
 
Sn.next := StatementList.next




S → StatementList | If | While | Print | Assign



 
 
 
StatementList.next := S.next


 
 
 
If.next := S.next


 
 
 
While.next := S.next


 
 
 
Print.next := S.next


 
 
 
Assign.next := S.next
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From syntax tree to flow graph 

n = 4
 z = 1


z = z*n
 n = n-1


print(z)
while 


n>0 


Statement List


Statement List

n = 4; 

z = 1;

while (n > 0) {

      z = z*n; 

      n = n-1;

} 

print(z);


true 

false 



From flow graph to state automata 
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n  z 

n’  z’ 

n = 4 
z = 1 

n > 0 
n’ = n-1 
z’ = z * n 

n = n’ 
z = z’ 

n ≤ 0,   print(z) 
stop 

start 



From automaton to predicate logic 
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true → reachable1 
(reachable1 � n=4 � z=1)  
  → reachable2(n,z)  

(reachable2(n,z)  � n<0 � z’=z*n � n’=n-1)  
  → reachable3(n’,z’) 

(reachable3(n’,z’) � n=n’ � z=z’ )  
  → reachable2(n,z) 

reachable2(n,z) � n ≥ 0 � print(z) )  
  → stop 

 
 



Exercise 
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while (m != n) {
   if (m > n) {
      m = m-n;
   }
   else {
      n = n-m;
   }
}

1. Draw the syntax 
tree 

2. Draw the control 
flow graph 

3. Draw the state 
automaton 



Logical representation 
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x1, x2, ..., xn x’1, x’2, ..., x’n 

e(x1, x2, ..., xn, x’1, x’2, ..., x’n) 

program point j program point k 

(reachablej(x1, x2, ..., xn)  � e(x1, x2, ..., xn, x’1, x’2, ..., x’n))  
  → reachablek(x’1, x’2, ..., x’n) 

transition constraint 



Example: A rate limiter* 
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*Example by Monniaux 



Rate limiter – logic representation 
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r1(X,X_old) :-  
 X_old=0,  
 r0(_,_). 

r1(X,X_old) :- 
 r5(X,X_old). 
  

r2(X,X_old) :- 
 X >= -1000, 
 X =< 1000, 
 r1(_,X_old). 
  

r3(X,X_old) :-  
 X1 >= X_old+1, 
 X = X_old+1, 
 r2(X1,X_old). 

r3(X,X_old) :-  
 X < X_old+1, 
 r2(X,X_old). 
  

r4(X,X_old) :-  
 X1 =< X_old-1, 
 X = X_old-1, 
 r3(X1,X_old). 

r4(X,X_old) :-  
 X > X_old-1, 
 r3(X,X_old). 
  

r5(X,X_old) :- 
 X_old=X, 
 r4(X,_). 



Invariants 

•  Many program analysis and 
verification tasks involve proving 
invariants 

•  An invariant is an assertion that is true 
at a given program point. 
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Example invariant 
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-1000 ≤ x_old ≤ 1000 
Check assertion 



Proving invariants 

•  To prove that invariant P holds at 
program point j, prove the following 
implication 

reachablej(x1,...,xn) → P  
which is equivalent to 
¬(reachablej(x1,...,xn) ⋀ ¬P) 
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Proof by approximation 
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reachablej(x1,...,xn)  

P Overapproximation 
of the set of points 
where 
reachablej(x1,...,xn)  
is true. 
 
 
 
 
Contained  
within P, hence 
 
reachablej(x1,...,xn)→P 
 



Energy invariants 

•  The program state can contain resource 
counters. 

•  reachablek(x1,...,xn,e) means that the 
total energy consumed is e, when the 
program reaches point k 

 
•  So we can express and prove assertions 

about energy (or other resources) 
•  More on this later... 
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Two basic techniques 

•  How to capture all reachable states? 
– answer, fixpoint techniques 

•  How to capture an infinite set of 
states? 
– answer, abstract interpretation 

•  These two methods underlie much 
program analysis 
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Fixpoint computation 

•  Sounds complicated, but it is a very 
simple procedure 

•  It is a closure or saturation procedure 
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Fixpoint example 
•  Consider a route network, with stations a,b,...,h 
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a

c

b

d

e

g

f 

h



post(S) function 

•  Let S be a set of stations. post(S) is the 
set of stations reachable in one step 
from S. E.g. post({a,h}) = {b,c,d,g} 
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a

c

b

d

e

g

f

h



Reachability as a fixpoint 

•  The set of stations reachable from an 
initial set S, called Reach(S) is defined 
as the smallest set Z such that Z = F(Z) 

where F(Z) = S � post(Z) 

 
•  This can be computed as the limit of a 

sequence �, F(�), F(F(�)), ...   
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Example 

•  Find the stations reachable from a. 
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a

c

b

d

e

g

f

h

F(Z) = {a} � post(Z) 
 
� 
F(�) = {a} 
F({a}) = {a,b,c,d} 
F({a,b,c,d}) = {a,b,c,d,f} 
F({a,b,c,d,f}) = {a,b,c,d,e,f} 
F({a,b,c,d,e,f}) = {a,b,c,d,e,f} 
 
fixpoint found {a,b,c,d,e,f} 



The reachable states of a program 

•  We apply the same idea to find the 
reachable states of a program, starting with 
the initial state. 
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n  z 

n’  z’ 

n = 4 
z = 1 

n > 0 
n’ = n-1 
z’ = z * n 

n = n’ 
z = z’ 

n ≤ 0, print(z) 
stop 

start 



The reachable states of a program 
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n  z 

n’  z’ 

n = 4 
z = 1 

n > 0 
n’ = n-1 
z’ = z * n 

n = n’ 
z = z’ 

n ≤ 0, print(z) 
stop 

start 

2 

3 

2   3 
{}   {} 
{(4,1)}         {} 
{(4,1)}         {(3,4)} 
{(4,1),(3,4)}    {(3,4)} 
{(4,1),(3,4)}  {(3,4),(2,12)} 
....   .... 
 
{(4,1),(3,4),  {(3,4),(2,12),(1,24)} 
(2,12),(1,24), 
(0,24) }                  



Infinite fixpoints 

•  However, usually the set of reachable 
states of a program is infinite, and the 
sequence could keep on growing 

•  We might never reach the fixpoint 

•  In this case we use abstraction 
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Abstract interpretation 

Example 

•  476305 × -576 = 274351680 

•  Is the above equation correct? 
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Rule of signs 

•  The rule of signs is an abstraction of the 
multiplication relation 

+ × +   =   + 
+ × �   =   � 
� × +   =   � 
� × �   =   + 
We can check incorrectness, but not 
correctness with the rule of signs. 
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The interval abstraction 

•  The value of a variable is abstracted by 
an interval 
–  The variable has any value within the interval 

•  We can perform operations on intervals, 
as we did for signs 

•  E.g. [3,10] + [-2,6] = [3+(-2), 10+6] = [1,16] 

•  Exercise. What is [3,10] � [-2,6]? 
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Example: interval abstraction 

•  The set of pairs of values {(4,1),(3,4), 
(2,12),(1,24),(0,24) } can be abstracted by 
the pair of intervals ([0,4], [1,24])          

•  So n is between 0 and 4, z is between 1 
and 24. 

•  But information has been lost 
–  the pair (3,19) is also consistent with the 

intervals. 
–  the intervals give an over-approximation of 

the reachable states. 
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Convex polyhedra 

•  A more precise abstraction than 
intervals is given by convex polyhedra 

•  Convex polyhedra are linear 
inequalities among the state variables 
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Example convex polyhedron abstraction 
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r1(I,J) :- 
I=0,J=10.

r2(I,J) :- 
r1(I,J).

r2(I,J) :-
I1 =< J1,
I = I1+2,
J = J1-1,
r2(I1,J1).

r3(I,J) :-
I >= J+1,
r2(I,J).



Approximate reachable states 
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r1(I,J) = [I=0,J=10].
r2(I,J) = [-I >= -16,I >= 0,I+2*J=20].
r3(I,J) = [-3*I >= -26,3*I >= 22,I+2*J=20].

This result is computed fast, using the  
Parma Polyhedra Library to perform the  
operations on convex polyhedra. 



Summary so far.... 

•  We can translate a program to a state 
automaton 

•  We can compute over-approximation 
of the reachable states of the program  
– using fixpoint computation and 

abstraction 

•  We can use the approximation to 
check assertions about the program. 
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