
Energy profiling of software:
static analysis fundamentals

John Gallagher
Roskilde University

ICT-Energy: Energy consumption in future ICT
devices

Summer School, Fiuggi, Italy, July 7-12, 2015

Acknowledgements

The partners in the EU ENTRA project

/74 2

Kerstin Eder and team

Pedro López García and team

Henk Muller and team

Roskilde team

ICT-Energy

/74 3

Physics

Application Software

System Software

Architecture

Devices

Why worry about energy of software?

•  Energy is consumed by hardware
•  Hardware is getting more and more

energy-efficient

•  So why worry about energy-efficiency
at the software level?

/74 4

Reason 1

• We take the application
programmer’s viewpoint
– programmers don’t know much

about hardware
– high-level languages hide the

platform from the programmer

/74 5

Reason 1 - continued

•  Something like driving an energy-

efficient car badly

/74 6

Energy-efficient hardware

Energy-inefficient software

Reason 2

•  Energy efficiency as a design goal
from the start

•  Get an energy profile for a program as
early as possible
 Analyse the code to find out how
much energy a program will use
 Deliver software with energy
guarantees

/74 7

Reason 2 - continued

  Don’t wait to test energy efficiency on
hardware, after the software is
developed

  It might be too late to fix “energy bugs”

/74 8

Development
machine

Deployment
platform

Reason 3

•  You can save more energy at the
software level than the hardware level

 There are more energy optimisation
opportunities higher up the system
stack.
 Most energy is wasted by application
software

/74 9

Energy transparency

•  Our aim is to let the programmer
“see” the energy usage of the code

–  without executing it
–  so that the programmer can see

where the program wastes energy

•  In a similar spirit as UPPAAL formal models,
directly on program code.

/74 10

Example

/74 11

biquadCascade(BANKS)
=
157 * BANKS + 51.7
nJoules

This is an estimate of
the energy used by the
function.

It is a linear function of
the value of BANKS

Example

/74 12

Energy a design goal for programmers

/74 13

Verification of energy specifications

/74 14

Summary of goals

•  We want tools for the programmer

–  that give information about the energy
usage of programs without running them
(energy transparency)

–  that allow energy assertions to be
checked (energy design goals)

/74 15

Analysis of programs

•  A program is a physical object

– some symbols on paper
– a pattern of bits in memory

•  But what is the meaning of a program?
•  This is program semantics.

/74 16

Program semantics

/74 17

n = 4;

z = 1;

while (n > 0) {

 z = z*n;

 n = n-1;

}

print(z);

To execute or analyse
this program,
we need to understand
the meaning of “while”,
“semicolon”, ”{”, “}”, etc.

/74 18

Program syntax tree (parsing)

n = 4
 z = 1

z = z*n
 n = n-1

print(z)
while

n>0

Statement List

Statement List
n = 4;

z = 1;

while (n > 0) {

 z = z*n;

 n = n-1;

}

print(z);

/74 19

From syntax tree to flow graph
Grammar Rules Semantic Rules for flow of control
If → if E then S1 else S2

E.true := Sl

E.false := S2

S1.next := If.next

S2.next := If.next

While → while E S1

E.true := S1

E.false := While.next

S1.next := While

StatementList → S1S2 Sn
Sj.next = Sj+1 (j = 1 to n-1)

Sn.next := StatementList.next

S → StatementList | If | While | Print | Assign

StatementList.next := S.next

If.next := S.next

While.next := S.next

Print.next := S.next

Assign.next := S.next

/74 20

From syntax tree to flow graph

n = 4
 z = 1

z = z*n
 n = n-1

print(z)
while

n>0

Statement List

Statement List

n = 4;

z = 1;

while (n > 0) {

 z = z*n;

 n = n-1;

}

print(z);

true

false

From flow graph to state automata

/74 21

n z

n’ z’

n = 4
z = 1

n > 0
n’ = n-1
z’ = z * n

n = n’
z = z’

n ≤ 0, print(z)
stop

start

From automaton to predicate logic

/74 22

true → reachable1
(reachable1 � n=4 � z=1)
 → reachable2(n,z)

(reachable2(n,z) � n<0 � z’=z*n � n’=n-1)
 → reachable3(n’,z’)

(reachable3(n’,z’) � n=n’ � z=z’)
 → reachable2(n,z)

reachable2(n,z) � n ≥ 0 � print(z))
 → stop

Exercise

/74 23

while (m != n) {
 if (m > n) {
 m = m-n;
 }
 else {
 n = n-m;
 }
}

1. Draw the syntax
tree

2. Draw the control
flow graph

3. Draw the state
automaton

Logical representation

/74 24

x1, x2, ..., xn x’1, x’2, ..., x’n

e(x1, x2, ..., xn, x’1, x’2, ..., x’n)

program point j program point k

(reachablej(x1, x2, ..., xn) � e(x1, x2, ..., xn, x’1, x’2, ..., x’n))
 → reachablek(x’1, x’2, ..., x’n)

transition constraint

Example: A rate limiter*

/74 25

*Example by Monniaux

Rate limiter – logic representation

/74 26

r1(X,X_old) :-
 X_old=0,
 r0(_,_).

r1(X,X_old) :-
 r5(X,X_old).

r2(X,X_old) :-
 X >= -1000,
 X =< 1000,
 r1(_,X_old).

r3(X,X_old) :-
 X1 >= X_old+1,
 X = X_old+1,
 r2(X1,X_old).

r3(X,X_old) :-
 X < X_old+1,
 r2(X,X_old).

r4(X,X_old) :-
 X1 =< X_old-1,
 X = X_old-1,
 r3(X1,X_old).

r4(X,X_old) :-
 X > X_old-1,
 r3(X,X_old).

r5(X,X_old) :-
 X_old=X,
 r4(X,_).

Invariants

•  Many program analysis and
verification tasks involve proving
invariants

•  An invariant is an assertion that is true
at a given program point.

/74 27

Example invariant

/74 28

-1000 ≤ x_old ≤ 1000
Check assertion

Proving invariants

•  To prove that invariant P holds at
program point j, prove the following
implication

reachablej(x1,...,xn) → P
which is equivalent to
¬(reachablej(x1,...,xn) ⋀ ¬P)

/74 29

Proof by approximation

/74 30

reachablej(x1,...,xn)

P Overapproximation
of the set of points
where
reachablej(x1,...,xn)
is true.

Contained
within P, hence

reachablej(x1,...,xn)→P

Energy invariants

•  The program state can contain resource
counters.

•  reachablek(x1,...,xn,e) means that the
total energy consumed is e, when the
program reaches point k

•  So we can express and prove assertions

about energy (or other resources)
•  More on this later...

/74 31

Two basic techniques

•  How to capture all reachable states?
– answer, fixpoint techniques

•  How to capture an infinite set of
states?
– answer, abstract interpretation

•  These two methods underlie much
program analysis

/74 32

Fixpoint computation

•  Sounds complicated, but it is a very
simple procedure

•  It is a closure or saturation procedure

/74 33

Fixpoint example
•  Consider a route network, with stations a,b,...,h

/74 34

a

c

b

d

e

g

f

h

post(S) function

•  Let S be a set of stations. post(S) is the
set of stations reachable in one step
from S. E.g. post({a,h}) = {b,c,d,g}

/74 35

a

c

b

d

e

g

f

h

Reachability as a fixpoint

•  The set of stations reachable from an
initial set S, called Reach(S) is defined
as the smallest set Z such that Z = F(Z)

where F(Z) = S � post(Z)

•  This can be computed as the limit of a

sequence �, F(�), F(F(�)), ...

/74 36

Example

•  Find the stations reachable from a.

/74 37

a

c

b

d

e

g

f

h

F(Z) = {a} � post(Z)

�
F(�) = {a}
F({a}) = {a,b,c,d}
F({a,b,c,d}) = {a,b,c,d,f}
F({a,b,c,d,f}) = {a,b,c,d,e,f}
F({a,b,c,d,e,f}) = {a,b,c,d,e,f}

fixpoint found {a,b,c,d,e,f}

The reachable states of a program

•  We apply the same idea to find the
reachable states of a program, starting with
the initial state.

/74 38

n z

n’ z’

n = 4
z = 1

n > 0
n’ = n-1
z’ = z * n

n = n’
z = z’

n ≤ 0, print(z)
stop

start

The reachable states of a program

/74 39

n z

n’ z’

n = 4
z = 1

n > 0
n’ = n-1
z’ = z * n

n = n’
z = z’

n ≤ 0, print(z)
stop

start

2

3

2 3
{} {}
{(4,1)} {}
{(4,1)} {(3,4)}
{(4,1),(3,4)} {(3,4)}
{(4,1),(3,4)} {(3,4),(2,12)}
....

{(4,1),(3,4), {(3,4),(2,12),(1,24)}
(2,12),(1,24),
(0,24) }

Infinite fixpoints

•  However, usually the set of reachable
states of a program is infinite, and the
sequence could keep on growing

•  We might never reach the fixpoint

•  In this case we use abstraction

/74 40

Abstract interpretation

Example

•  476305 × -576 = 274351680

•  Is the above equation correct?

/74 41

Rule of signs

•  The rule of signs is an abstraction of the
multiplication relation

+ × + = +
+ × � = �
� × + = �
� × � = +
We can check incorrectness, but not
correctness with the rule of signs.

/74 42

The interval abstraction

•  The value of a variable is abstracted by
an interval
–  The variable has any value within the interval

•  We can perform operations on intervals,
as we did for signs

•  E.g. [3,10] + [-2,6] = [3+(-2), 10+6] = [1,16]

•  Exercise. What is [3,10] � [-2,6]?

/74 43

Example: interval abstraction

•  The set of pairs of values {(4,1),(3,4),
(2,12),(1,24),(0,24) } can be abstracted by
the pair of intervals ([0,4], [1,24])

•  So n is between 0 and 4, z is between 1
and 24.

•  But information has been lost
–  the pair (3,19) is also consistent with the

intervals.
–  the intervals give an over-approximation of

the reachable states.

/74 44

Convex polyhedra

•  A more precise abstraction than
intervals is given by convex polyhedra

•  Convex polyhedra are linear
inequalities among the state variables

/74 45

Example convex polyhedron abstraction

/74 46

r1(I,J) :-
I=0,J=10.

r2(I,J) :-
r1(I,J).

r2(I,J) :-
I1 =< J1,
I = I1+2,
J = J1-1,
r2(I1,J1).

r3(I,J) :-
I >= J+1,
r2(I,J).

Approximate reachable states

/74 47

r1(I,J) = [I=0,J=10].
r2(I,J) = [-I >= -16,I >= 0,I+2*J=20].
r3(I,J) = [-3*I >= -26,3*I >= 22,I+2*J=20].

This result is computed fast, using the
Parma Polyhedra Library to perform the
operations on convex polyhedra.

Summary so far....

•  We can translate a program to a state
automaton

•  We can compute over-approximation
of the reachable states of the program
– using fixpoint computation and

abstraction

•  We can use the approximation to
check assertions about the program.

/74 48

