Energy profiling of software:

static analysis fundamentals

John Gallagher
Roskilde University

ICT-Energy: Energy consumption in future ICT
devices
Summer School, Fiuggi, Italy, July 7-12, 2015

Acknowledgements

The partners in the EU ENTRA project

Elic University of
BRISTOL

/74

Kerstin Eder and team

Pedro Lopez Garcia and team

Henk Muller and team

Roskilde team

ENTRA

ICT-Energy

r

Application Software
System Software
Architecture

Devices

Physics

/74

ENTRA

Why worry about energy of software?

» Energy is consumed by hardware

« Hardware is getting more and more
energy-efficient

* SO wWhy worry about energy-efficiency
at the software levele

ENTRA

/74

Reason 1

 We take the application
orogrammer’s viewpoint

—programmers don't know much
about hardware

—high-level languages hide the
platform from the programmer

ENTRA

| i

Reason 1 - continued

Energy-inefficient software

Energy-efficient hardware

» Something like driving an energy-
efficient car badly

-»
— ENTRA

Reason 2

» Energy efficiency as a design godl
from the start

« Get an energy profile for a program as
early as possible

® Analyse the code to find out how
much energy a program will use

® Deliver software with energy
guarantees

— . ENTRA

Reason 2 - continued

@ Don't wait to test energy efficiency on
hardware, after the software is

developed
Development Deployment Ay
machine plcﬂ:orm SR &

@ It might be too late to fix “energy bugs”

— . ENTRA

Reason 3

e YOU Can save more energy at the
software level than the hardware level

® There are more energy optimisation
opportunities higher up the system
stfack.

® Most energy is wasted by application
software

E— ENTRA

Energy transparency

« Quraim is to let the programmer
“see” the energy usage of the code

— without executing it

— so that the programmer can see
where the program wastes energy

* |In a similar spirit as UPPAAL formal models,
directly on program code.

ENTRA

| i

Example

13 int biquadCascade(biquadState &state, int xn) { biqUGdCGSCGde(BANKS)
14 unsigned int ynl; _

15 int ynh; =

16 157 * BANKS + 51.7

17 for(int j=0; j<BANKS; j++) {

18 ynl = (1<<(FRACTIONALBITS-1)); nJoules

19 ynh = 0;

20 {ynh, ynl} = macs(b%quads[j].be, xn, ynh,.ynl); ITP\]S iS an EESTirT1C]T63 ()f
21 {ynh, ynl} = macs(biquads[j].bl, state.b[j].xnl, ynh, ynl);

2 {ynh, ynl} = macs(biquads[j].b2, state.b[j].xn2, ynh, ynl); the energy used by the
23 {ynh, ynl} = macs(biquads[j].al, state.b[j+1].xn1, ynh, ynl); .

24 {ynh, ynl} = macs(biquads[j].a2, state.b[j+1].xn2, ynh, ynl); fLJr](:TIC)r1-

25 if (sext(ynh,FRACTIONALBITS) == ynh) {

26 ynh = (ynh << (32-FRACTIONALBITS)) | (ynl >> FRACTIONALBITS); . . .

27 } else if (ynh < @) { It is a linear function of
28 ynh = 9x80000000;

" } else { the value of BANKS

30 ynh = Ox7fffffff;

31 }

32 state.b[j].xn2 = state.b[j].xn1;

33 state.b[j].xn1l = xn;

34

35 xn = ynh;

36 }

37 state.b[BANKS].xn2 = state.b[BANKS].xn1;

38 state.b[BANKS].xn1l = ynh;

39 return xn;

— ENTRA

Example

in port inP = XS1_PORT _4A; void producer(int n, chanend couts) {
out port led_port = XS1_PORT _1E; for (int i=0;i<n;i++) {
printf("i=%d\n",i); S 13.8%
void consumer(chanend couts) { couts <: i;
int j; }
while (1) { }
12.3% couts > |;
\ for (int i=0;i<j;i++) int main () {
led_port <: (i & 1); chan a; int x;
} par {
) while (1){
72.4% inP > x; L 1.5%
producer(x,a);
Simulation with random 0..15 values on)
input port. | consumer(a);
} ;
} » ™

— . ENTRA

Energy a design goal for programmers

#pragma check energy(proc (x))<5pJd
int proc(int x) {

Output:
Checked 0<x<5=energy (proc (x))<5pJd

— ENTRA

Verification of energy specifications

A

RESOURCE USAGE

SPECIFICATION UPPER/LOWER BOUSNDS (Su/sL)
O SPECIFICATION INTERVALS : :

ANALYSIS UPPER/LOWER BOUNDS

{su /sL)
E ANALYSIS INTERVALS :

AU
AL
AL >=sL
su
AND
AU <=5sU
SL AL > SU =+ INCORRECT ! UNKNOWN ;| CORRECT | UNKNOWN | AU < SL = INCORRECT
k P ¥:¢ die e >
INPUT DATA SIZE -

— ENTRA

Summary of goals

 We want fools for the programmer

— that give information about the energy
usage of programs without running them
(energy transparency)

— that allow energy assertions to be
checked (energy design goals)

ENTRA

| i

Analysis of programs

« A program is a physical object

— some symbols on paper
— a pattern of bits in memory

» But what is the meaning of a programg?
 This Is program semantics.

ENTRA

| i

Program semantics

n=4;
z=1;

while (n>0) {

Z =7Z*n;
n=n-1;
}
print(z);

To execute or analyse
this program,

we need to understand
the meaning of “while”,
“semicolon”, "{", "}", etc.

/74

ENTRA

Program syntax tree (parsing)

Statement List
n=4 z=1 while print(z)
n=4; n>0 Statement List
z=1;
while (n>0) {
Z=2z*n;
} n=n-1; Z=Z*Il n:n_l
print(z);

ENTRA

| i

From syntax tree to flow graph

Grammar Rules Semantic Rules for flow of control
If — if E then S, else S, E.true =S,
E.false := S,

S,.next := If.next
S,.next = If.next
While — while E S, E.true =S,
E.false := While.next
S,.next := While
StatementList — S, S, Sy S;next=15;,; (=1ton-1)
S,.next := StatementList.next

S — StatementList | If | While | Print | Assign
StatementList.next := S.next
If.next := S.next
While.next := S.next
Print.next := S.next
Assign.next := S.next

EE— ENTRA

From syntax tree to flow graph

Statement List

y

n=4;

z=1;

while (n>0) {
Z=z*n;
n=n-1;

}

print(z);

/74

ENTRA

From flow graph to state automata

start

n<0, print(z)

/74

stop

ENTRA

From automaton to predicate logic

true = reachable,
(reachable, A n=4 A z=1)

— reachable,(n,z)
(reachable,(n,z) An<OAZz'=z"n A n'=n-1)

— reachable,s(n’,z’)
(reachable;(n’,z') An=n’ Az=z")

— reachable,(n,z)
reachable,(n,z) An=0 A print(z))

— stop

E— ENTRA

Exercise

1. Draw the syntax
tree

2. Draw the control
flow graph

3. Draw the state
automaton

/74

while (m != n) {
1f (m > n) {

m = m-n;
}
else {

n = n-m;
}

ENTRA

Logical representation

program point | transition constraint program point k

1 1 1
e(Xy, Xp, vees Xy X1, X', i, X)) Jo |
X1, Xos wers Xn, X', X o e X',

(reachable;(x;, X,, ..., X)) Ae(X;, X oo X, X'y, X9, 1y X))
— reachable,(x’;, X5, ..., X",)

— . ENTRA

Example: A rate limiter®

Listing 5. Rate limiter

void main () |
float x old, x;

x_old = 0;
while (1) |
X = input(-1000,1000);
if (x >= x_old+1)
X = x_old+1;
if (x <= x _old-1)
x = x_old-1;
x old = x;

*Example by Monniaux

ue
e old:=2x

Rate limiter - logic representation

r1(X,X_old) :-
X_old=0,
ro(_,_).
r1(X,X_old) :-
r5(X,X_old).
r2(X,X_old) :-
X >=-1000,
X =< 1000,
r1(_X_old).
r3(X,X_old) :-
X1 >= X_old+1,
X = X_old+1,
r2(X1,X_old).

r3(X,X_old) :-

X < X_ old+1,
r2(X,X_old).

r4(X,X_old) :-

X1 =< X_old-1,

X = X_old-1,

r3(X1,X_old).
r4(X,X_old) :-

X > X_old-1,

r3(X,X_old).

rS5(X,X_old) :-
X_old=X,
r4(X,_).

s SATRR

Invariants

* Many program analysis and
verification tasks involve proving
INvariants

e AN Invariant is an assertion that is true

at a given program point.

ENTRA

/74

Example invariant

void main() |
float x old, x;
x old = 0;
while (1) |
x = input(-1000,1000);
if (x >= x _old+1)
Xx = x old+1;
if (x <= x old-1) .
x = x old—1; Check asserfion
x old = X; <« -1000 < x_old < 1000
]
}

I ENTRA

Proving invariants

» To prove that invariant P holds at

program point |, prove the following
implication

reachable(x;,...x,) — P
which is equivalent to
“(reachableg(x;,....x,) A 7P)

| . ENTRA

Proof by approximation

Overapproximation P
of the set of points

where
reachable(x, ...,
is true.

Contained
within P, hence

reachableg(x;,....x,) =P

— ENTRA

Energy invariants

« The program state can contain resource
counters.

* reachable,(x,,....x,.€) means that the
total energy consumed is €, when the
program reaches point k

« SO we can express and prove assertions
about energy (or other resources)

« More on this later...

| ENTRA

/74

Two basic techniques

 How to capture all reachable statese
— answer, fixpoint techniques

 How to capfture an infinite set of
statese
— answer, abstract inferpretation

« These two methods underlie much
program analysis

ENTRA

| i

Fixpoint computation

« Sounds complicated, but it is a very
simple procedure

* |T1s a closure or saturation procedure

ENTRA

/74

Fixpoint example

« Consider a route network, with stations a,b,...,h

ENTRA

| i

post(S) function

» Let S be a set of stations. post(S) Is the
set of stations reachable in one step
from S. E.g. post({a.h}) = {b.c.d,g}

ENTRA

| i

Reachability as a fixpoint

* The set of stations reachable from an
initial set S, called Reach(S) is defined
as the smallest set Z such that Z = F(Z)

where F(Z) =S U post(Z)

» This can be computed as the [imit of a
sequence 9, F(2), F(F(2)), ...

— ENTRA

Example

» Find the stafions reachable from a.

F(Z) = {a} U post()

F(e) = {a}

F({a}) = {a.b,c.d}
F({a,b,c,d}) ={a.b.c.d.f}
F({a,b,c.d.f}) ={a,b,c,d.e,f}
F({a,b,c.d.e.f}) ={a.b.c.de.f}

fixpoint found {qa,b,c,d,e.f}

| ENTRA

/74

The reachable states of a program

 We apply the same idea to find the
reachable states of a program, starting with
the inifial state.

Nn <0, print(z
n z print(z) > sfop

The reachable states of a program

start) 3
| ozs 0 0
n <0, print(z) {(4.1)} {}
n z —> stop {(4,1)} {(3.4)}
- (41).34) {34}
l i (41,34 {(3.4).(212)
wlkd (41).34), {(3.4).(212).01.24]}
(2,12),(1,24),
(0,24))
ENTRA
74

L I —

Infinite fixpoints

 However, usudlly the set of reachable
states of a program is infinite, and the
sequence could keep on growing

 We might never reach the fixpoint

e |n this case we use abstraction

ENTRA

/74

Abstract interpretation

Example

* 476300 x -576 = 274351680

* |s the above equation correcte

/74

ENTRA

Rule of signs

* The rule of signs Is an absfraction of the
multiplication relation

+ X+ = +
+X— = —
— X+ = —
—X— = +

We can check incorrectness, but not
correctness with the rule of signs.

| . ENTRA

The interval abstraction

* The value of a variable is abstracted by
an inferval

— The variable has any value within the interval

 We can perform operations on intervails,
as we did for signs

« E.g.[3,10] + [-2,6] = [3+(-2), 10+6] = [1,16]

« Exercise. Whatis [3,10] — [-2,6]¢
ENTRA

| i

Example: interval abstraction

« The set of pairs of values {(4,1),(3.4),

(2,12),(1,24),(0,24) } can be abstracted by
the pair of intervals ([0,4], [1,24])

« Sonisbetween 0 and 4, zis between 1
and 24.

« But information has been lost

— the pair (3,19) is also consistent with the
intervals.

— the intervals give an over-approximation of
the reachable states.

Convex polyhedra

* A more precise abstraction than
iInfervals is given by convex polyhedro

« Convex polyhedra are linear
iInequalities among the state variables

ENTRA

/74

Example convex polyhedron abstraction

Coa . rl(I,JdJ) :-
var 1,]:1nt; I=0,J=10.
begin r2(I,J) :-
P . r1i(I1,J).
1=0; 3=10; r2(I,J) :-
while i<=j do Il =< Ji,
L I = I1+2,
1 = 1+2; J = J1-1,
i = 9-1: r2(I11,J1).
J J=%s r3(I,J) :-
done; I >= J+1,
end r2(I,J).
ENTRA
74

< I —

Approximate reachable states

r1(I,J) = [I=0,J=10].
r2(I,J) = [-I >= -16,I >= 0,I+2*J=20].
r3(I,J) = [-3*I >= -26,3*I >= 22,I+2*xJ=20].

This result is computed fast, using the
Parma Polyhedra Library to perform the
operations on convex polyhedra.

/74

ENTRA

Summary so far....

 We can translate a program to a state
autfomaton

« We can compute over-approximation
of the reachable states of the program

— using fixpoint computation and
abstraction

 We can use the approximation to
check assertions about the program.

| ENTRA

/74

